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Abstract

One reason for the high cost of 3D wave-equation
migration is the inversion of large matrices involved.
The technique of directional splitting reduces this
cost by significantly reducing the dimensions of the
matrices to be inverted. Unfortunately, this approach
is not accurate and introduces a numerical error in
the propagation of the wavefields. The most accepted
way in the literature to correct for this error is the
Li correction. However, this technique still has a
high computational cost due to the need of applying
multiple Fourier transforms and their inverses. To
see if we can avoid this costly method and find a fix
that has roughly the same effect as the Li correction,
we investigate its theoretical expression in order to
approximate the Fourier transforms. To do so, we
use the method of stationary phase. We find a
convolutional operator of small support that could be
used to make an approximate correction. However,
its implementation involves finding the directions
of the stationary-phase correction by means of an
equation system that has no analytical solution. To
further facilitate the correction process, we choose
to further reduce the convolution operator to a
simple application of a phase-correction factor in
space, using the direction of wave propagation as the
dominant direction. Numerical experiments with the
exact propagation angle show that the so-achieved
correction has acceptable quality with considerable
reduction in computational cost. However, application
of this operator in inhomogeneous media requires the
extraction of the propagation angle from the wavefield.
In our numerical tests, the correction with angles
obtained by phase extraction did not reach the same
quality as obtained with the exact angles.

Introduction

The application of wave-equation migration in three
dimensions adds the problem of computational cost to
the problems of stability and accuracy. To accelerate
FD or FFD migration, a technique known as splitting
is frequently used, i.e., the separation of single-step
3D migration into two steps inside 2D planes along
the horizontal coordinate axes, usually in the inline and
crossline directions (Brown, 1983). When operator splitting

is applied to the implicit FD operator, so that the equations
are solved alternately in the inline and crossline directions,
the scheme is called alternating directions implicit (ADI).
This bears the disadvantage of being incorrect for reflectors
with high slope, resulting in strong positioning errors
of reflectors with dip directions far from the directions
of the migration planes. Thus, it generates strong
numerical anisotropy. Over the years, several approaches
were proposed to remedy this problem. Ristow (1980)
suggested (see also Ristow and Rühl, 1997), in addition to
migrations 2D axes directions, 2D migration in the diagonal
directions. Kitchenside (1988) used phase-shift migration
plus extrapolation of the wavefield residual by finite
differences to reduce the error caused by splitting. Graves
and Clayton (1990) proposed implementing a phase-
correction operator using finite differences incorporating a
damping function to ensure stability of the 3D FD migration
scheme.

Instead of using phase-shift migration plus FD residual-
wavefield extrapolation as in Kitchenside (1988), Li (1991)
proposed the use of conventional FD migration plus
residual-wavefield extrapolation by phase shift to improve
the quality of the migrated image. Without change in
conventional 3D FD migration, the Li correction consists
of adding an error compensation by means of a phase-
shift filter at certain steps of downward extrapolation. This
method not only compensates for the splitting error of
extrapolation, but also corrects the positioning error of
steeply dipping reflectors.

However, the Li correction is a technique that demands
a high computational cost due to the need of applying
multiple Fourier transforms and their inverses. However,
a large spacing between two subsequent Li corrections is
generally not an option because the correction becomes
increasingly worse if too much error is accumulated.
Therefore, we are interested in a cheaper, possibly
approximate, version of the Li correction that can be
applied at every depth step without the need for a Fourier
transform and its inverse. Such a procedure should
help to reduce the high cost of the Li correction while
retaining approximately the same effect. To find such
an approximation to the Li correction, we investigate its
asymptotic behavior by means of the method of stationary
phase in order to approximate the Fourier transforms
involved.

Correction for splitting in two directions (Li correction)

As discussed previously, splitting in two directions causes
numerical anisotropy, i.e., the occurrence of positioning
errors in the images of large complex structures. To
compensate for these errors and still preserve the
efficiency of the method of finite-differences migration,
Li (1991) proposed the application of a phase-correction
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operator, implemented either using the phase-shift method
or phase-shift plus interpolation (PSPI). This operator is
obtained by evaluating the difference between the ideal and
split migration operators.

The idea of this method is to carry out the split migration,
i.e., conventional 2D FD migrations in the two coordinate
directions, together with a further extrapolation of the
wavefield residual. This latter correction is done by the
phase-shift method when the lateral velocity variation is
small, and by phase-shift plus interpolation when the lateral
velocity variation is relevant.

To obtain the Li correction for the techniques discussed
above, we expand the one-way wave equation in a complex
Padé series and apply the splitting technique in two
directions. Rewriting the directional parts of the migration
operator in fractional terms, we arrive at the FD migration
operator

Opmig = 1+
N

∑
n=1

An
∂ 2

∂x2

1+Bn
∂ 2

∂x2

+
N

∑
n=1

An
∂ 2

∂y2

1+Bn
∂ 2

∂y2

. (1)

In this work, we consider the complex Padé version of FD
migration (Amazonas et al., 2007), where An and Bn are the
complex Padé coefficients. The error caused by a migration
using this operator can be described by the difference

Opdif =

√

1−
c2(x)

ω2
(

∂ 2

∂x2
+

∂ 2

∂y2
)

−



1+
N

∑
n=1

An
∂ 2

∂x2

1+Bn
∂ 2

∂x2

+
N

∑
n=1

An
∂ 2

∂y2

1+Bn
∂ 2

∂y2



 . (2)

The above difference operator (2) defines a differential
equation that needs to be solved to correct the extrapolated
wavefield for the splitting error. It reads

∂P

∂ z
=

[
iω

c(x)
Opdif

]

P . (3)

In order to allow for the solution of this differential equation
(3) and find the correction operator of Li (1991), the square
root in the difference (2) needs to be approximated by
means of a Padé expansion. The solution to the differential
equation with the resulting approximate difference operator
can be represented by means of the finite-difference
method as

P(z+∆z) = e
i(krz− ω

cr
)∆z

N

∏
n=1

pn+ iqn

pn− iqn

N

∏
n=1

rn+ isn

rn− isn
P(z) , (4)

where the coefficients are given by

krz =

√
(

ω

cr

)

− k2x − k2y ,

pn =
1−

[

µ∆x2+Bn

(
cr
ω

)2
]

k̄2x

∆z
,

qn =
crAnk̄

2
x

2ω
,

rn =
1−

[

µ∆y2+Bn

(
cr
ω

)2
]

k̄2y

∆z
,

sn =
crAnk̄

2
y

2ω
.

In these equations, cr is a reference velocity and µ
is the term of the Douglas (1962) that increases the
order of the approximation from second to fourth order.
Finally, the overlined symbols k̄x and k̄y denote the
numerical approximations to the wavenumbers. According
to Claerbout (1985), they are given by

k̄2x =
2−2cos(kx∆x)

∆x2
,

k̄2y =
2−2cos(ky∆y)

∆y2
.

As is evident from the dependence on the wavenumbers
kx and ky, the Li correction needs to be applied in the
wavenumber domain. This implies that multiple spacial
Fourier transforms are required, because the original FD
migration operator (1) is in the space domain.

Spatial approximation of the Li correction

To reduce the cost involved in this procedure, we search
for a spatial-domain approximation to the Li correction. For
this purpose, we study the stationary-phase evaluation of
the involved Fourier transforms.

In the wavenumber domain, the Li correction can be
represented by a simple multiplication of the wavefield by a
phase-correction factor, given by

Pcorr(kx,ky,z,ω) = P(kx,ky,z,ω)ei
ω
cr
E∆z , (5)

where the phase-correction term, E, can be written as (Li,
1991, equation 11)

E =

√

1−cos2 φ sin
2 θ−sin

2 φ sin
2 θ

−

√

1−cos2 φ sin
2 θ −

√

1−sin
2 φ sin

2 θ +1

= cosθ −

√

1− cos2 φ sin
2 θ −

√

1− sin
2 φ sin

2 θ +1, (6)

and where ∆z represents the depth interval over whicht
the Li correction is applied. The angles θ and φ
are the propagation angles for each wavenumber vector
component.

After inverse Fourier transform in kx and ky, we obtain

Pcorr(x,y,z,ω) =
∫

dkxdkyP(kx,ky,z,ω)ei
ω
cr
E∆z

eikxx+ikyy. (7)

To find a computationally more economic correction
procedure, we apply certain approximations to this
expression for the case of a homogeneous medium, i.e.,
where cr is the constant reference velocity.

Approximation by convolution

Expressing the wavefield P(kx,ky,z,ω) in the wavenumber
domain by means of the Fourier transform, we obtain

Pcorr(x,y,z,ω) =
∫

dkxdky

∫

dx′dy′ P(x′,y′,z,ω)

×e
i ω
cr
E∆z

eikx(x−x′)+iky(y−y′)

=
∫

dx′dy′ P(x′,y′,z,ω)

×

∫

dkxdkye
i ω
cr
E∆z

eikx(x−x′)+iky(y−y′)

︸ ︷︷ ︸

C(x−x′,y−y′)

, (8)
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where we have changed the order of integration to arrive at
the final expression. Note that the operation described by
this equation is a convolution with the operator C resulting
from the internal integration.

Stationary phase

To simplify the convolutional operator C, we approximate
its integral expression by means of the stationary-phase
method. This leads to

C(x− x′,y− y′) =
∫

dkxdky e
i ω
cr
E∆z

eikx(x−x′)+iky(y−y′)

≈

√
cr

ω detE∆z
e
i ω
cr
E∗∆z

eik
∗

x (x−x′)+ik∗y (y−y′), (9)

where E denotes the Hessian matrix of second derivatives
of E with respect to kx and ky, and E∗ denotes the value
of E at the stationary point. This point is defined by the
stationary values k∗x e k∗y , which in turn are defined by

∇k

(
ω

cr
E∆z+ kx(x− x′)+ ky(y− y′)

)∣
∣
∣
∣
k∗x ,k

∗

y

=

(
ω

cr
∆z∇kE+∆~x

)∣
∣
∣
∣
k∗x ,k

∗

y

=~0 , (10)

where ∇k = (∂kx ,∂ky) denotes the gradient in the horizontal

wavenumber components and ∆~x = (x− x′,y− y′). The
assumption of a homogeneous medium leads to the
second expression in equation (10).

Stationary directions. To calculate the derivatives
∂E/∂ki (i = x,y), we make use of the dependency of the
components ki on the propagation angles φ and θ . By
means of the chain rule, we can write

∂E

∂ki
=

∂E

∂θ

∂θ

∂ki
+

∂E

∂φ

∂φ

∂ki
. (11)

Differentiating E of equation (6) with respect to θ and φ , we
find

∂E

∂θ
= −sinθ +

cos
2 φ sinθ cosθ

√

1− cos2 φ sin
2 θ

+
sin

2 φ sinθ cosθ
√

1− sin
2 φ sin

2 θ
, (12)

∂E

∂φ
= −

cosφ sinφ sin
2 θ

√

1− cos2 φ sin
2 θ

+
sinφ cosφ sin

2 θ
√

1− sin
2 φ sin

2 θ
. (13)

The derivatives of the propagation angles with respect to
the components of the wavenumber vector can be found
from the equations relating these quantities, i.e.,

kx =
ω

cr
sinθ cosφ , (14)

ky =
ω

cr
sinθ sinφ . (15)

Differentiating these equations with respect to kx and ky,
respectively, we find

1 =
ω

cr

(

cosθ cosφ
∂θ

∂kx
− sinθ sinφ

∂φ

∂kx

)

, (16)

0 =
ω

cr

(

cosθ cosφ
∂θ

∂ky
− sinθ sinφ

∂φ

∂ky

)

, (17)

0 =
ω

cr

(

cosθ sinφ
∂θ

∂kx
+ sinθ cosφ

∂φ

∂kx

)

, (18)

1 =
ω

cr

(

cosθ sinφ
∂θ

∂ky
+ sinθ cosφ

∂φ

∂ky

)

. (19)

Multiplication of equation (16) with cosφ and of equation
(18) with sinφ and summation of the resulting equations
leads to

cosφ =
ω

cr
cosθ

∂θ

∂kx
. (20)

Correspondingly, multiplication of equation (17) with cosφ
and of equation (19) with sinφ and summation of the
resulting equations leads to

sinφ =
ω

cr
cosθ

∂θ

∂ky
. (21)

By exchanging in these operations sinφ by cosφ and cosφ
by −sinφ , we find analogously

−sinφ =
ω

cr
sinθ

∂φ

∂kx
, (22)

cosφ =
ω

cr
sinθ

∂φ

∂ky
. (23)

Combining these equations, the searched-for derivatives
of the propagation angles with respect to the wavenumber
components can be represented as

∂θ

∂kx
=

cr

ω

cosφ

cosθ
, (24)

∂θ

∂ky
=

cr

ω

sinφ

cosθ
, (25)

∂φ

∂kx
= −

cr

ω

sinφ

sinθ
, (26)

∂φ

∂ky
=

cr

ω

cosφ

sinθ
. (27)

Substitution of these expressions, together with equations
(12) and (13), in equation (11), yields

∂E

∂kx
=

cr

ω
cosφ tanθ




cosθ

√

1− cos2 φ sin
2 θ

−1



 , (28)

∂E

∂ky
=

cr

ω
sinφ tanθ




cosθ

√

1− sin
2 φ sin

2 θ
−1



 . (29)

Upon using these equations in the stationary-phase
equation (10), the propagation angles that define the
stationary direction are given by the equation system

x− x′ = −cosφ sinθ




1

√

1− cos2 φ sin
2 θ

−
1

cosθ



∆z, (30)

y− y′ = −sinφ sinθ




1

√

1− sin
2 φ sin

2 θ
−

1

cosθ



∆z. (31)

Propagation direction. Representing the displacement
vector ∆~x in polar coordinates, i.e.,

x− x′ = r cosψ and y− y′ = r sinψ , (32)
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we can recast system (30-31) into the form

cosφ sinθ




1

√

1− cos2 φ sin
2 θ

−
1

cosθ



∆z+ r cosψ = 0 , (33)

sinφ sinθ




1

√

1− sin
2 φ sin

2 θ
−

1

cosθ



∆z+ r sinψ = 0 . (34)

It is easy to verify that this system is satisfied in the
following horizontal dislocation directions ψ

ψ = 0
◦
: φ = 0

◦ , (35)

ψ = 90
◦
: φ = 90

◦ , (36)

ψ = 45
◦
: φ = 45

◦ . (37)

For other directions ψ, system (33-34) needs to be solved
numerically. Since this system does not depend on ω or
cr, it can be solved independently of the actual migration
problem to be solved, with the stationary values of the
directions stored in a table.

When solving system (33-34) for a number of directions
ψ and distances r, we noted that the stationary point
only exists for rather small distances r. Moreover, the
value of sinθ is very close to 1 for a great part of the
domain under consideration (Figure 1). This means that
the stationary direction is close to the horizontal, and the
angle φ is always relatively close to the propagation angle
ψ, with differences below 4

◦ (Figure 2). This motivated us
to abandon the convolutional approach for a even simpler
one, discussed below.

Single-point approximation of the correction

Because of these characteristics of the solution to system
(33-34), we assume that in the correction equation (7), a
single propagation direction is mainly responsible for the
outcome. For simplicity, we assume this direction to be
well-approximated by the horizontal direction parallel to the
horizontal component of the propagation vector. Apart
from the above discussed fact that the deviation between
these directions is small for most points in the medium,
this direction has also the advantage of being rather easily
determined from the wavefield. Thus, the correction factor
E is approximated by its value in this direction, i.e., E ≈

E p = E(θ = 90
◦,φ = ψ). As a consequence, equation (7)

can be approximated by

Pcorr(x,y,z,ω) ≈ e
i ω
cr
E p∆z

∫

dkxdkyP(kx,ky,z,ω)eikxx+ikyy

≈ e
i ω
cr
E p∆z

P(x,y,z,ω) . (38)

In this way, we arrive at an approximate correction directly
in space, the application of which is much simpler than
the full Li correction (4) and which does not require the
execution of a convolutional operation like equation (8).
Please note, however, that this approach is rather crude.
An approximate solution of system (33-34) might provide
better values of θ and φ for each ∆z and ψ, even if r

is small. Such a procedure will still allow the application
of the multiplicative correction (38) with better values for
the propagation angles and might thus lead to a better
correction than our crude procedure.
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Figure 1: Stationary value of sinθ as obtained by solving
system (33-34) by means of Newton’s method.
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Figure 2: Stationary value of the difference φ − ψ
as obtained by solving system (33-34) by means of
Newton’s method.

Extraction of the propagation angle

The application of the simplified correction (38) demands
the knowledge of the present propagation angle of
the wavefield to be corrected at a point (x,y). In a
homogeneous medium, this angle can be determined from
the relative position of the point with respect to the source
location. However, in a heterogeneous medium, the angle
ψ must be extracted from the wavefield at (x,y). To achieve
this extraction, we use the identities

∇(h)P(x,y,z,ω) = ∇(h)
[

P0(x,y,z)e
iωτ(x,y,z)

]

≈ P0(x,y,z)e
iωτ iω∇(h)τ(x,y,z) , (39)

where ∇(h) represents the horizontal components of the
gradient vector, i.e., ∇(h) = (∂/∂x,∂/∂y). In this way, the
horizontal slowness vector is given by

~p(h) = ∇(h)τ(x,y,z)≈
1

iωP(x,y,z,ω)
∇(h)P(x,y,z,ω) . (40)
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Figure 3: Horizontal slices through the impulse response
of FD migration without Li correction in a homogeneous
medium at the depths (a) 480 m, (b) 960 m, (c) 1920 m,
and (d) 2880 m.

Since this vector also has to satisfy

~p(h) =
1

cr

(
cosψ
sinψ

)

, (41)

we can conclude that

(
cosψ
sinψ

)

≈
cr

ω
ℑ

{

∇(h)P(x,y,z,ω)

P(x,y,z,ω)

}

. (42)

We stress that this is a high-frequency approximation. For
lower frequencies, the propagation angle extracted in this
way might not correctly represent the true propagation
direction of the wavefield under consideration.

Numerical results

We tested the approximate correction (38) for wave
propagation in a homogeneous model. Figure 3 shows
four horizontal slices through the impulse response of FD
migration in a homogeneous medium without Li correction.

The corresponding results using the approximate Li
correction of equation (38) are shown in the next figures.
First, we show the result when the wavefield-propagation
angles are calculated from the position of the grid point
where the correction is performed (Figure 4). We note
that this procedure is only possible in the homogeneous
case, where the propagation direction is always in radial
direction from the source. We have included these figures
to demonstrate the potential of the approximate correction.
We see that the wavefronts were well corrected, resulting
in an almost perfectly circular shape.

When we extracted the propagation direction directly from
the wavefield, frequency by frequency, we obtain the
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Figure 4: Corresponding slices of Figure 3 after
approximate Li correction (38) using the angles calculated
from the grid position.
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Figure 5: Corresponding slices of Figure 3 with
approximate Li correction (38) using angles extracted from
the propagating wavefield.

corrected result shown in Figure 5. We note that the quality
of the achieved correction is reduced as compared to the
result of the grid-position angles (Figure 4). Still, the quality
is superior to the result without applying any correction
(Figure 3).

We have experimented with various modifications of the
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Figure 6: Corresponding slices of Figure 3 with
approximate Li correction (38) using angles extracted from
the propagating wavefield with smoothing.

algorithm used to extract the propagation angles from the
wavefield, notably smoothing over adjacent frequencies.
The best result that was obtained by application of such
techniques is presented in Figure 6. In this case, the
phase extracted from the wavefield was averaged over six
adjacent frequencies, while the horizontal gradient field
was smoothed over 10 neighboring points. We observe
an improvement compared to the results of Figure 5, but
even smoothing could help to not reach the same quality
as in Figure 4. We note specifically that the smoothing
created some artifacts inside the wavefront at greater
depth (see Figure 6d). We cannot rule out the possibility
that approximation (42) does not have enough quality
to determine the propagation angle with the necessary
precision for the wavefield under consideration.

Conclusions

It is well-known that the implementation of three-
dimensional migration by means of the directional-splitting
technique causes numerical anisotropy. The most widely
used method to reduce this effect is called Li correction (Li,
1991). However, the Li correction is a technique that still
has a relatively high computational cost due to the need of
applying multiple Fourier transforms and their inverses. To
see if it is possible to reduce this cost, we have tried to find
an approximate correction that has roughly the same effect
as the Li correction. For this purpose, we investigate the
theoretical expression of the latter in order to approximate
the involved Fourier transforms. For this analysis, we
utilized the method of stationary phase applied to the Li
correction in a homogeneous medium.

We found a convolutional operator of small support
that could be used to make an approximate correction.
However, its implementation involves finding the directions

of the stationary-phase correction through a system of
equations that has no analytical solution. Since these
equations do not depend on the signal frequency and
the value of the supposedly constant velocity, the system
could be resolved in principle once and for all, saving the
stationary directions for each direction in a table.

However, the correction operation would still be a
somewhat expensive convolution. To further simplify and
cheapen the correction process, we chose to reduce the
convolution operator to a single pointwise application of an
approximate phase-correction factor in space. From a trial
solution of the stationary-phase equations, we know that
the stationary angles are close to the dominant propagation
direction of the wavefield. Numerical experiments with
the exact propagation angle calculated from the grid
position show that the approximate correction achieved by
this operator has acceptable quality and can achieve a
considerable reduction in computational cost. However,
the application of this approximate correction factor in
inhomogeneous media requires the extraction of the
propagation angle directly from the wavefield. In our
numerical tests, the correction with angles obtained by
such an extraction did not reach the same quality as
obtained by the exact angles. This suggests that if a
better extraction technique can be found, the approximate
correction can become an interesting alternative to a full Li
correction. Because of its lower computation cost, it can
be applied at each depth level, avoiding the accumulation
of errors over a larger depth interval.
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